
Introduction to modular arithmetic S2

Our discussions lie always in the set of integers (Z).

GCD and HCF
The greatest common divisor (GCD) or highest common factor (HCF) is the greatest or highest

number (integer) that will divide a given set of numbers.
What is the gcd of the numbers (60,84,210)?
Look at the gcd of just 60, 84 at first.
Guessing: 2 as 2|60 and 2|84 (| denotes divides). 60=2.30, 84=2.42. Again 2 divides both 30

and 42, 30=2.15, 42=2.21. Thus far 60 = 22.15, 84 = 22.21.
Now 3|15 and 3|21 i.e., 15=3.5, 21=3.7. We now have 60 = 22.3.5, 84 = 22.3.7.
Numbers 5 and 7 have no common factor other than 1. We conclude gcd(60,84)= 22.3 = 12.

60=12.5 and 84=12.7.
Now find the gcd of 12 and 210. Factoring 210 we get 210=3.70=3.7.10=3.7.2.5.
Then see that the gcd(60,84,210)=gcd(12,210)=gcd(2,2,3 and 2.3.5.7) =2.3=6.
Often one omits the abbreviation gcd and just writes (60,84)=12 or (60,84,210)=6.

Euclid’s algorithm for finding the gcd
Divide 84 by 60 which has remainder, thus 84 = 1.60 + 24
Divide the divisor (60) by the remainder (24) to get 60 = 2.24 + 12
Divide the divisor (24) by the remainder (12) to get 24 = 2.12 with no remainder.
So 12 is the gcd of 60 and 84.
Continue on with 210 and 12, so that 210 = 17.12 + 6
Next line 12 = 2.6 with no remainder.
So finally gcd(60,84,210) = 6.

Given two numbers a,b if gcd(a,b) = 1, that is, they have no factor in common other than unity,
we say that they are relatively prime, or coprime. If a set of numbers have gcd=1 we say that they
are each relatively prime in pairs or coprime to every other in the set.

Exercise 2
Find the gcd of 78,696 and 19,332 using Euclid’s algorithm.

Fundamental Theorem of Arithmetic - (some ’large numbers!)
Every number can be written as a product of prime power factors. For example 4410 = 2.32.5.72.
Can you factorize

N = 114, 381, 625, 757, 888, 867, 669, 235, 779, 976, 146, 612, 010, 218, 296,

721, 242, 362, 562, 561, 842, 935, 706, 935, 245, 733, 897, 830, 597, 123,

563, 958, 705, 058, 989, 075, 147, 599, 290, 026, 879, 543, 541

This very large number (129 digits) is a product of two very large prime numbers.
A googol is 1 with a hundred zeros after it
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G = 10, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,

000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

= 10100

A googolplex is 10googol.

Pierre de Fermat

c 1607 - 1685

Isaac Newton - 1643-1727. Fermat was 36 when Newton was born.

Fermat was the first person known to have evaluated the integral of general power functions.
With his method, he was able to reduce this evaluation to the sum of geometric series. The
resulting formula was helpful to Newton, and then Leibniz, when they independently developed the
fundamental theorem of calculus.
In number theory, Fermat studied Pell’s equation, perfect numbers, amicable numbers and what

would later become Fermat numbers. It was while researching perfect numbers that he discovered
Fermat’s little theorem. He invented a factorization method– Fermat’s factorization method–
as well as the proof technique of infinite descent, which he used to prove Fermat’s right triangle
theorem which includes as a corollary Fermat’s Last Theorem for the case n = 4. Fermat developed
the two-square theorem, and the polygonal number theorem, which states that each number is a
sum of three triangular numbers, four square numbers, five pentagonal numbers, and so on.
Although Fermat claimed to have proven all his arithmetic theorems, few records of his proofs

have survived. Many mathematicians, including Gauss, doubted several of his claims, especially
given the diffi culty of some of the problems and the limited mathematical methods available to
Fermat.
His famous Last Theorem was first discovered by his son in the margin in his father’s copy of

an edition of Diophantus, and included the statement that the margin was too small to include the
proof. It seems that he had not written to Marin Mersenne about it. It was first proven in 1994,
by Sir Andrew Wiles, using techniques unavailable to Fermat.

Although Pythagoras Theorem x2 + y2 = z2 has integer solutions, the equation xn + yn = zn

for n > 2 has no +ve integer solutions (Fermat’s Last Theorem).
The full text of Fermat’s statement, written in Latin, reads "Cubum autem in duos cubos, aut

quadrato-quadratum in duos quadrato-quadratos, et generaliter nullam in infinitum ultra quadra-
tum potestatem in duos eiusdem nominis fas est dividere cuius rei demonstrationem mirabilem sane
detexi. Hanc marginis exiguitas non caperet" (Nagell 1951, p. 252). In translation,
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"It is impossible for a cube to be the sum of two cubes, a fourth power to be the sum of two
fourth powers, or in general for any number that is a power greater than the second to be the sum
of two like powers.
I have discovered a truly marvelous demonstration of this proposition that this margin is too

narrow to contain."

A polynomial, or polynomial expression, in a variable, is a sum of terms in powers of the variable
- with each power multiplied by a coeffi cient. Thus a polynomial, of degree n in x is of the form

f(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an−1x+ an

We have seen that, if
x ≡ y(modm)

then
x ≡ y(modm)
x2 ≡ y2(modm)
· · ·
xn ≡ yn(modm)

an−1x ≡ an−1y(modm)
an−2x

2 ≡ an−2y2(modm)
· · ·
a0x

n ≡ a0yn(modm)
That is

f(x) ≡ f(y)(modm)

A polynomial equation is of the form f(x) = 0.

Fermat numbers (1607-1665 French lawyer and mathematician)
Fermat stated, though confessing he did not posess a valid proof, that all numbers of the form

22
n

+ 1

are primes.This statement was refuted by Euler, who showed that the number 22
5

= 232 was
divisible by 641.
Without calculating 232 explicitly, the divisibility of this large number by 641 can be established

with the help of congruences fairly easily.
We have (mod 641 in operation)

22 ≡ 4, 24 ≡ 16 28 ≡ 256 216 = 2562 ≡ 154(mod 641)
232 ≡ 1542 ≡ 640(mod 641) so 232 + 1 ≡ 641 ≡ 0(mod 641).

The numbers Fn = 22
n

+ 1 are called Fermat numbers.
As of 2016, the only known Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.
F11 = 2

211+1 = 32,317,006,071,311,007,300,714,8...193,555,853,611,059,596,230,657 (617 digits)
= 319,489× 974, 849× 167, 988, 556, 341, 760, 475, 137(21digits)× 3, 560, 841, 906, 445, 833, 920, 513(22digits)×
173,462,447,179,147,555,430,258...491,382,441,723,306,598,834,177 (564 digits) (fully factored 1988)
There are no other known Fermat primes Fn with n > 4. However, little is known about Fermat

numbers with large n. In fact, each of the following is an open problem:
Is Fn composite for all n > 4?
Are there infinitely many Fermat primes? (Eisenstein 1844)
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Are there infinitely many composite Fermat numbers?
Does a Fermat number exist that is not square-free?
As of 2014, it is known that Fn is composite for 5 ≤ n ≤ 32, although amongst these, complete

factorizations of Fn are known only for 0 ≤ n ≤ 11, and there are no known prime factors for n =
20 and n = 24. The largest Fermat number known to be composite is F3329780, and its prime factor
193× 223329782 + 1, a megaprime, was discovered by the PrimeGrid collaboration in July 2014.

Mersenne numbers (Mersenne 1588-1648, an ordained priest and polymath)
A number of the form Mp = 2p − 1 where p is a prime number is called a Mersenne number.

Such a number which is itself prime is also called a Mersenne prime.
A new Mersenne prime was found in December 2017. As of January 2018, 50 are now known.

The largest known prime number M77,232,917 = 2
77,232,917 − 1 is a Mersenne prime with 23,249,425

digits. It was found by the Great Internet Mersenne Prime Search (GIMPS) in 2017.Since 1997, all
newly found Mersenne primes have been discovered by the Great Internet Mersenne Prime Search
(GIMPS), a distributed computing project on the Internet.

Example 1
Find the remainder obtained by dividing 3100 by 101.
In all cases when the exponent is large the operation will be greatly shortened by resorting to

the fact that every integer is a sum of powers of 2. Thus in our case

100 = 64 + 32 + 4

and
3100 = 364.332.34.

Now assuming we are working (mod 101), but not writing it out every time we write, in short
34 = 81 ≡ −20 38 ≡ 202 ≡ −4 316 ≡ 16 332 ≡ 256 ≡ −47 364 ≡ 472 ≡

−13(mod 101)
and again, 34.332 ≡ (−20) .(−47) ≡ 31 and 34.332.364 ≡ 31.(−13) = −403 ≡ 1(mod 101), that is

3100 ≡ 1(mod 101).

It is also true that, e.g., 28100 ≡ 1(mod 101) or 85100 ≡ 1(mod 101) or indeed any number a (not
a muliple of 101) satisfies

a100 ≡ 1(mod 101).

Or also a72 ≡ 1(mod 73) for any a not a multiple of 73, or a3670 ≡ 1(mod 3671) etc., etc.
What is noticeable about these congruences?

Example 2
Familiar criteria of divisibility by 3, 9, 11 follow immediately from the properties of congruences.

Let a number N be represented in the decimal notation thus:

N = a+ 10b+ 102c+ 103d+ · · ·

Noticing that
10 ≡ 1 102 ≡ 1 103 ≡ 1, . . . (mod 9)
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we have
N ≡ a+ b+ c+ d+ · · · (mod 9).

Hence a number is divisible by 9 if and only if the sum of its digits is divisible by 9. Since the
congruence holding for a certain modulus evidently holds for any divisor of this modulus, we also
have

N ≡ a+ b+ c+ d+ · · · (mod 3).

With respect to the modulus 11, we have

10 ≡ −1 102 ≡ 1 103 ≡ −1, . . . (mod 11)

and so
N ≡ a− b+ c− d+ · · · (mod 11)

Euler’s φ function or totient
If m is a +ve integer the number of +ve integers less thanm and relatively prime tom is denoted

by φ(m) and φ is called Euler’s totient or φ function. (The number 1 is counted).
For example, if m = 12, φ(12) = {} = 4.
If p is prime, φ(p) = p− 1. More generally, φ(pα) = pα − pα−1. If α = 1 this says φ(p) = p− 1.
Euler’s totient is useful in cryptography.
Let the integer n be expressed as the product of its prime powers

n = pα11 pα22 · · · pαss think of 360 = 23.32.5

Then
φ(n) = n(1− 1

p1
)(1− 1

p2
) · · · (1− 1

ps
)

If n is a power of a single prime, say n = pα then

φ(pα) = pα(1− 1
p
) = pα − pα−1 see above.

For n = 360, we get φ(360) = 360(1 − 1
2 )(1 −

1
3 )(1 −

1
5 ) = 360.

1
2 .
2
3 .
4
5 = 96 - is the number of +ve

integers less than 360 and relatively prime to it.

Euler’s Theorem
If a is relatively prime to m then

aφ(m) ≡ 1(modm).

So, for m = 360, where φ(m) = 96 we have, for any integer a relatively prime to 360, that is,
(a, 360) = 1 we have

a96 ≡ 1(mod 360).

Most particularly if m = p a prime, so that φ(p) = p− 1 - see above - we get for any integer a
such that (a, p) = 1,
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Fermat’s Little Theorem
ap−1 ≡ 1(mod p)

Thus for example

3100 ≡ 1(mod 101) and 9472 ≡ 1(mod 73) and 10000003670 ≡ 1(mod 3671)

Bezout’s Theorem - Many congruences
If x ≡ a(modm1) and x ≡ b(modm2) then there exist integers p1, p2 such that

m1p1 +m2p2 = gcd(a, b).

A solution, now of both congruences is

x = bm1p1 + am2p2

That is
x ≡ bm1p1 + am2p2(modm1m2).

Example 3
Solve the congruences

x ≡ 2(mod 3)

x ≡ 3(mod 5)

x ≡ 2(mod 7).

Consider just the first two congruences. Here, m1 = 3,m2 = 5,m3 = 7. And a = 2, b = 3, and
we put c = 2 for the third congruence.
Then, x will be congruent to 3.5.7 = 105.
For the first two congruences gcd(3, 5) = 1. Can we find integers p1 and p2 such that

3p1 + 5p2 = 1

This can be solved as a congruence, but a mental solution quickly appears as p1 = 2, p2 = −1.
Thus a solution of the first two congruences is

x = 3.3.2 + 2.5.(−1) = 8.

So far we then have
x ≡ 8(mod 3.5) ≡ 8(mod 15).

So any x that satisfies this latter congruence also satisfies both the first and second congruences,
e.g., 23, -7, 68 etc.
Now use this with the third congruence, that is

x ≡ 8(mod 15)

x ≡ 2(mod 7)
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(Can we ’guess’a solution? Try using some numbers that solve the first congruence!)
Otherwise - GOOD EXERCISE - solve the two congruences by the method used above! You

should get

x ≡ 23(mod 105) or

x = 23 + 105k where k is an integer

CHECK. See the image on the rhs in the Wikipedia article
https://en.wikipedia.org/wiki/Chinese_remainder_theorem.

From Wiki: The earliest known statement of the theorem, as a problem with specific numbers,
appears in the 3rd-century book Sunzi Suanjing by the Chinese mathematician Sunzi.
Sunzi’s work contains neither a proof nor a full algorithm. What amounts to an algorithm

for solving this problem was described by Aryabhata (6th century). Special cases of the Chinese
remainder theorem were also known to Brahmagupta (7th century), and appear in Fibonacci’s Liber
Abaci (1202). The result was later generalized with a complete solution called Dayanshu in Qin
Jiushao’s 1247 Mathematical Treatise in Nine Sections (Shushu Jiuzhang).

Chinese Remainder Theorem
https://www.youtube.com/watch?v=3PkxN_r9up8
https://www.youtube.com/watch?v=3PkxN_r9up8
Read s 6. Case of Moduli relatively prime in pairs.
Read, particularly, the Example.

Remainder
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Theorem

2.jpg

You are doing very well indeed if you can follow the proof!!
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